

OraGRAFT® Endure

Moldable Demineralized Fibers with Cancellous

Clinical Overview

OraGraft Endure is comprised of two components (1) bone fibers which are demineralized to encourage bone formation and healing and (2) cancellous particulate (250-1000 microns) which allows for improved space maintenance. The bone fibers interlock, allowing the graft to become moldable upon rehydration without the use of a carrier.

Applications

Surgical procedures that require bone void filler

Features & Benefits

- 100% Bone: Facilitates natural remodeling during the bone healing process (no human, xenograft or synthetic carriers).
- Osteoconductive: The large surface area and interconnected network of demineralized cortical fibers provides a scaffold that promotes cellular attachment and cell spreading, with the added benefit of space maintenance from the cancellous component.¹
- Osteoinductive Potential: Optimally demineralized by LifeNet Health's patented and proprietary PAD® technology to expose natural growth factors.²⁻⁶
- **Versatile:** Moldable upon rehydration to conform to the surgical site.
- Resists Migration: Interlocking fibers allow graft to remain intact and in place.
- **Safety:** Sterilized using proprietary and patented technology, providing a sterility assurance level of 10⁻⁶ to reduce the risk of disease transmission without compromising the graft's inherent osteoconductive properties or osteoinductive potential.⁷
- **Convenience:** Ambient storage and rapid rehydration.

OraGraft Endure Ambient Storage*/4 Year Shelf Life Volume Order Code 0.5 cc DFC-1007 1.0 cc DFC-1008 2.5 cc DFC-1009

Instructions for use available at LifeNetHealth.org/IFU

References

- Murphy MB, Suzuki RK, Sand TT, et al. Short term culture of mesenchymal stem cells with commercial osteoconductive carriers provides unique insights into biocompatibility. J Clin. Med. 2013; 2,49-66; doi:10.3390/ jcm2030049
- Zhang M, Powers RM, and Wolfinbarger L. Effect(s) of the demineralization process on the osteoinductivity of demineralized bone matrix. J Periodontol. 1997; 68:1085-1092
- Turonis JW, McPherson JC 3rd, Cuenin MF, et al. The effect of residual calcium in decalcified freeze-dried bone allograft in a criticalsized defect in the Rattus norvegicus calvarium. J Oral Implantol. 2006; 32(2):55-62
- 4. Herold RW, Pashley DH, Cuenin MF, et al. The effects of Varying degrees of Allograft Decalcification on Cultured Porcine Osteoclast cells. J Periodontol. 2002 Feb; 73(2):213-9
- Mott DA, Mailhot J, Cuenin MF, et al. Enhancement of osteoblast proliferation in vitro by selective enrichment of demineralized freeze-dried bone allograft with specific growth factors. J Oral Implantol. 2002; 28(2):57-66
- Pietrzak WS, Ali SN, Chitturi D, et al. BMP depletion occurs during prolonged acid demineralization of bone: characterization and implications for graft preparation. Cell Tiss. Bank. 2007 (Published on line)
- 7. Eisenlohr LM. "Allograft Tissue Sterilization Using Allowash XG"." 2007 Bio-Implants Brief.

^{*}While ambient room temperature has not been defined by regulatory bodies, LifeNet Health would recommend storage at 2°C to 37°C with excursions of less than 24 hours up to 40°C. If an excursion outside this range occurs, please contact LifeNet Health.