Pliafx[®] Strip

Optimized Handling. Uncompromised Performance.

Pliafx[®] Strip

Optimized Handling. Uncompromised Performance.

The **Plia**FX Advantage

OPTIMIZED HANDLING

PliaFX Strip was developed specifically for spine procedures where there is a need for bone grafting material that is preformed, flexible, and easily customized.

Feature	Benefit
Preformed into a strip configuration	Saves operating room (OR) time
Flexible	Conforms and stays contained in the surgical site
Easily customized	Can be cut to size to match surgical needs

HOSPITABLE SCAFFOLD

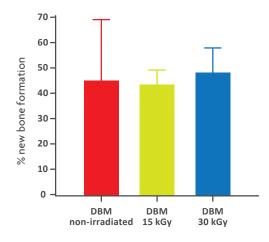
The cortical fibers that make up PliaFX Strip create a hospitable osteoconductive scaffold.

Feature	Benefit
Long cortical fibers with multiple protrusions and a rough surface	Provides a large surface area and many contact points for cellular attachment ¹
Interconnected cortical fibers	Allows cells to easily spread out and make connections with each other ¹
Favorable porosity and pore size ²⁻¹²	Promotes cellular attachment and proliferation

🖌 100% BONE, NO CARRIER

PliaFX Strip is comprised of 100% natural human bone. The graft has been demineralized using PAD[®] technology to encourage natural remodeling during the bone healing process.

Feature	Benefit
Optimally demineralized using PAD technology	Optimal osteoinductive potential ¹³⁻¹⁷
No carrier	100% bone content, no dilution of osteoinductive potential $^{\ensuremath{\text{1}}\ensuremath{^{18}}\xspace}$
Natural human bone	Facilitates natural remodeling during the bone healing process


Demineralized using proprietary PAD^{*} technology that targets optimal residual calcium levels of 1-4% without compromising the graft's inherent osteoconductive properties or osteoinductive potential.¹³⁻¹⁷

MEDICAL DEVICE-GRADE STERILITY

PliaFX Strip is sterilized using proprietary and patented Allowash XG[®] technology, which provides a medical device-grade Sterility Assurance Level (SAL) 10⁻⁶ without compromising the biochemical or biomechanical properties of the graft.

Feature	Benefit
Aseptically processed per AATB Standards	Minimizes contamination
Low dose of gamma irradiation administered at low temperatures	Maintains osteoinductive potential and osteoconductivity of Demineralized Bone Matrix (DBM) ¹⁹⁻²⁰
Irradiated after final packaging	Renders a Sterility Assurance Level (SAL) of 10 ^{-6 21}

Osteoinductivity of DBM

Allowash XG Does Not Affect Osteoinductive Properties¹⁹⁻²⁰

DBM processed using Allowash XG using 15 or 30 kGy of irradiation did not show reduced percentage of bone formation compared to non-irradiated DBM.²⁰

Pliafx[®] Strip

Optimized Handling. Uncompromised Performance.

Order Code	Length	Width	Thickness
BL-1700-25100	100 mm	25 mm	4 mm
BL-1700-25050	50 mm	25 mm	4 mm

REFERENCES

- Murphy MB, Suzuki RK, Sand TT, et al. Short term culture of mesenchymal stem cells with commercial osteoconductive carriers provides unique insights into biocompatibility. J Clin. Med. 2013; 2,49-66; doi:10.3390/ jcm2030049
- 2. Data on file at LifeNet Health, DHF 14-006
- Karageorgiou, V. and D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005. 26(27): p. 5474-91.
- Kuboki, Y., et al., BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J Biomed Mater Res, 1998. 39(2): p. 190-9.
- Eggli, P.S., W. Muller, and R.K. Schenk, Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res, 1988(232): p. 127-38.
- Flautre, B., et al., Porous HA ceramic for bone replacement: role of the pores and interconnections experimental study in the rabbit. J Mater Sci Mater Med, 2001. 12(8): p. 679-82.
- Galois L, e.a., Bone ingrowth into two porous ceramics with different pore sizes: An experimental study. Acta Orthop Belg, 2004. 70(6): p. 598-603.

- Gauthier, O., et al., Macroporous biphasic calcium phosphate ceramics versus injectable bone substitute: a comparative study 3 and 8 weeks after implantation in rabbit bone. J Mater Sci Mater Med, 2001. 12(5): p. 385-90.
- Hulbert, S.F., et al., Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res, 1970. 4(3): p. 433-56.
- Motomiya, M., et al., Effect of Hydroxyapatite porous characteristics on healing outcomes in rabbit posterolateral spinal fusion model. Eur Spine J, 2007. 16(12): p. 2215-24.
- Shimazaki, K. and V. Mooney, Comparative study of porous hydroxyapatite and tricalcium phosphate as bone substitute. J Orthop Res, 1985. 3(3): p. 301-10.
- Uchida, A., et al., Bone ingrowth into three different porous ceramics implanted into the tibia of rats and rabbits. J Orthop Res, 1985. 3(1): p. 65-77.
- Zhang M, Powers RM, and Wolfinbarger L. Effect(s) of the demineralization process on the osteoinductivity of demineralized bone matrix. J Periodontol. 1997; 68:1085-1092
- Turonis JW, McPherson JC 3rd, Cuenin MF, et al. The effect of residual calcium in decalcified freeze-dried bone allograft in a critical-sized defect in the Rattus norvegicus calvarium. J Oral Implantol. 2006;32(2):55-62
- Herold RW, Pashley DH, Cuenin MF, et al. The effects of Varying degrees of Allograft Decalcification on the Cultured Porcine Osteoclast cells. J Periodontol. 2002 Feb; 73(2):213-9

- Mott DA., Mailhot J, Cuenin MF, Sharawy M, Borke J. Enhancement of osteoblast proliferation in vitro by selective enrichment of demineralized freeze-dried bone allograft with specific growth factors. J Oral Implantol 2002;28(2):57-66
- Pietrzak WS, Ali SN, Chitturi D, Jacob M, Woodell-May JE. BMP depletion occurs during prolonged acid demineralization of bone: characterization and implications for graft preparation. Cell Tiss. Bank 2007 (Published online)
- Lee JH, Baek H-R, Lee KM, et al. The effect of poloxamer 407-based hydrogel on the osteoinductivity of demineralized bone matrix. Clinics in Orthopedic Surgery. 2014; 6(4):455-461; doi:10.3390/jcm2030049
- Weintroub S, Reddi AH. Influence of irradiation on the Osteoinductive potential of demineralized bone matrix. Calcif Tissue Int. 1988; 42(4):255-60
- Triplett S, Gaskins B, Moore MA, Chen JS, Wolfinbarger L Effects of gamma irradiation on the Osteoinductive of demineralized bone matrices in an athymic rat posterolateral spinal fusion model. American Association of Tissue Banks 31st Annual Meeting; Boston, MA; September 2007
- 21. Eisenlohr LM. "Allograft Tissue Sterilization Using Allowash XG?" 2007 BioImplants Brief

LifeNetHealth.org

The LifeNet Health logo is a registered trademark of LifeNet Health. PliaFX, PAD, and Allowash XG are registered trademarks of LifeNet Health. ©2018 LifeNet Health, Virginia Beach, VA. All rights reserved.